

Installing EPICS on the Raspberry Pi

What is EPICS?

For those who haven’t heard, EPICS (http://www.aps.anl.gov/epics) is an
open-source control system used worldwide for the routine operation and
control of many particle accelerators such as FermiLab and SLAC, for the
operation of scientific telescopes such as the Gemini and Keck
telescopes, X-ray synchrotrons such as the Advanced Photon Source and the
Diamond Light Source, neutron diffraction facilities such as the
Spallation Neutron Source, and lots of other neat stuff. The system is
scalable and runs on lots of different hardware. Here, we show you
how to run EPICS on the Raspberry Pi!

Contents

	Raspberry Pi Distribution

	Preparing for EPICS

	EPICS Base

	synApps

	PyEpics

	Files

Here is how I installed the Experimental Physics and Industrial Control System
software (EPICS) [1] on the Raspberry Pi [2].

The EPICS software is a client/server system.
To keep things simple, we will run both the server and a client
on the Raspberry Pi. (Clients on other computers on our
LAN might be able to interact with our EPICS server as well but
we will not discuss that now.)

The EPICS server we will use is built in several parts:

	EPICS Base provides all the development libraries and a
few applications and utilities.

	synApps provides additional capabilities that will be useful
in real projects. We only use a little of it here, though.

There are many, many possible EPICS clients.
Since the RPi already has Python, we’ll work with that:

	PyEpics is an EPICS binding to the Python language, allowing
us to build a simple client and interact with our server.

	[1]	EPICS: http://www.aps.anl.gov/epics

	[2]	RPi: http://www.raspberrypi.org/

Raspberry Pi Distribution

	hardware:	Raspberry Pi, model B, RASPBRRY-MODB-512M [3]

	software:	2012-12-16 wheezy-raspbian distribution [4]

Installed wheezy-raspbian distribution on a 16 GB SD card.
(It is helpful, but not necessary, to expand the
partition to use the full memory of the SD card
using raspi-config before starting X11):

	Filesystem
	Size
	Used
	Avail
	Use%
	Mounted on

	rootfs
	15G
	2.4G
	12G
	18%
	/

	/dev/root
	15G
	2.4G
	12G
	18%
	/

	devtmpfs
	220M
	0
	220M
	0%
	/dev

	tmpfs
	44M
	252K
	44M
	1%
	/run

	tmpfs
	5.0M
	0
	5.0M
	0%
	/run/lock

	tmpfs
	88M
	68K
	88M
	1%
	/run/shm

	/dev/mmcblk0p1
	56M
	17M
	40M
	30%
	/boot

	[3]	vendor: http://www.newark.com/jsp/search/productdetail.jsp?SKU=43W5302

	[4]	wheezy-raspbian: http://downloads.raspberrypi.org/images/raspbian/2012-12-16-wheezy-raspbian/2012-12-16-wheezy-raspbian.zip

Preparing for EPICS

EPICS is flexible about where (which directory path) it is placed.
Still, it helps to use standard locations. We’ll build it from
a directory in the pi account,
but make a link to that directory called /usr/local/epics.
You’ll need to open a terminal window:

	1
2
3
4
5
6
7

	cd ~
mkdir -p ~/Apps/epics
sudo su
cd /usr/local
ln -s /home/pi/Apps/epics
exit
cd ~/Apps/epics

By making the epics directory in pi account,
we will be able to modify any of our EPICS resources
without needing to gain higher privileges.

EPICS Base

EPICS Base is very easy to build. The wheezy-raspbian distribution
already has all the tools necessary to build EPICS Base.
All that is necessary is to define the host architecture
and then build it.

Downloading

The latest stable version of EPICS Base is 3.14.12.3
(3.15 is released but is still not recommended for production use):

	1
2
3

	wget http://www.aps.anl.gov/epics/download/base/baseR3.14.12.3.tar.gz
tar xzf baseR3.14.12.3.tar.gz
ln -s ./base-3.14.12.3 ./base

Building

note the backticks

Note the use of backticks in the export command.
They evaluate the enclosed text as a command and return
the result. For more discussion, see the section below
titled Delimiters: Parentheses, Braces, and Back-Quotes.

EPICS base can be built for many different operating systems
and computers. Each build is directed by the EPICS_HOST_ARCH
environment variable. A command is provided to determine
the best choice amongst all the systems for which EPICS currently
has definitions. Here is the way to set the environment variable
on any UNIX or Linux OS using the bash shell (use either of these
two commands, they are equivalent in the bash shell:

	1
2

	export EPICS_HOST_ARCH=`/usr/local/epics/base/startup/EpicsHostArch`
export EPICS_HOST_ARCH=$(/usr/local/epics/base/startup/EpicsHostArch)

We can check this value by printing it to the command-line (remember,
we are logged in as root):

	1
2

	echo $EPICS_HOST_ARCH
linux-arm

Good! EPICS base will build for a Linux OS on an ARM architecture.
This matches my Raspberry Pi.

Tip

The export command above will be useful for future
software development. Add it to the ~/.bash_aliases
file if it exists, otherwise add it to the ~/.bashrc
file with a text editor (such as nano ~/.bashrc).

Now, build EPICS base for the first time:

	1
2

	cd ~/Apps/epics/base
make

This process took about 50 minutes.

Starting

It is possible to start an EPICS IOC at this point, although there
is not much added functionality configured. We can prove to
ourselves that things will start. Use this linux command:

	1

	./bin/linux-arm/softIoc

and EPICS will start with a basic command line prompt:

	1

	epics>

At this prompt, type:

iocInit

and lines like these (different time stamp) will be printed:

	1
2
3
4
5
6
7

	Starting iocInit
##
EPICS R3.14.12.3 $Date: Mon 2012-12-17 14:11:47 -0600$
EPICS Base built Jan 19 2013
##
iocRun: All initialization complete
epics>

Congratulations! EPICS Base has now been built on the Raspberry Pi.

Environment Declarations

To simplify using the tools from EPICS base,
consider making these declarations in your environment
(~/.bash_aliases):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	export EPICS_ROOT=/usr/local/epics
export EPICS_BASE=${EPICS_ROOT}/base
export EPICS_HOST_ARCH=`${EPICS_BASE}/startup/EpicsHostArch`
export EPICS_BASE_BIN=${EPICS_BASE}/bin/${EPICS_HOST_ARCH}
export EPICS_BASE_LIB=${EPICS_BASE}/lib/${EPICS_HOST_ARCH}
if ["" = "${LD_LIBRARY_PATH}"]; then
 export LD_LIBRARY_PATH=${EPICS_BASE_LIB}
else
 export LD_LIBRARY_PATH=${EPICS_BASE_LIB}:${LD_LIBRARY_PATH}
fi
export PATH=${PATH}:${EPICS_BASE_BIN}

Note

We are being a bit cautious here, not to remove any existing
definition of LD_LIBRARY_PATH. Also the comparison is a Yoda
condition [5], placing the constant term on the left of the comparison.
Yoda conditions can reveal accidental assignments at run time.
Perhaps not so much in the bash shell, but it’s useful in programming
languages.

	[5]	Yoda condition: https://en.wikipedia.org/wiki/Yoda_Conditions

After EPICS base has been built, we see that it has taken
~35 MB of storage:

	1
2

	pi@raspberrypi:~$ du -sc base-3.14.12.3
35636 base-3.14.12.3

synApps

synApps is a collection of software tools that help to create a
control system for beamlines.
It contains beamline-control and data-acquisition components
for an EPICS based control system.

	[6]	synApps: http://www.aps.anl.gov/bcda/synApps/

There are instructions for installing synApps posted online:
http://www.aps.anl.gov/bcda/synApps/synApps_5_6.html

Download

The current release of synApps (as this was written in 2013-02) is v5.6.
The compressed source archive file is available from the BCDA group at APS.
The file should be 149 MB:

	1
2

	 wget http://www.aps.anl.gov/bcda/synApps/tar/synApps_5_6.tar.gz
 tar xzf synApps_5_6.tar.gz

Uncompressed and unconfigured, the synApps_5_6 source folder is ~541 MB.

Configuring

All work will be relative to this folder:

	1

	cd ~/Apps/epics/synApps_5_6/support

Follow the instructions in the README file.
These are the changes I made to run on the Raspberry Pi.

	file
	changes

	configure/CONFIG_SITE
	no changes

	configure/RELEASE
	SUPPORT=/usr/local/epics/synApps_5_6/support
EPICS_BASE=/usr/local/epics/base

After modifying configure/RELEASE, propagate changes to all
module RELEASE files by running:

cd ~/Apps/epics/synApps_5_6/support
make release

Edit Makefile and remove support for these modules:

	ALLEN_BRADLEY

	DAC128V

	IP330

	IPUNIDIG

	LOVE

	IP

	VAC

	SOFTGLUE

	QUADEM

	DELAYGEN

	CAMAC

	VME

	AREA_DETECTOR

	DXP

xxx module: reconfigure

The xxx module is an example and template EPICS IOC,
demonstrating configuration of many synApps modules.
APS beam line IOCs are built using xxx as a template.

In xxx-5-6/configure/RELEASE, place a comment on lines 19 and 32
to remove build support for areaDetector in xxx:

#AREA_DETECTOR=$(SUPPORT)/areaDetector-1-8beta1

#IP=$(SUPPORT)/ip-2-13

In xxx-5-6/xxxApp/src/xxxCommonInclude.dbd, place a comment on line 34:

#include "ipSupport.dbd"

Then, in xxx-5-6/xxxApp/src/Makefile, comment out all
lines that refer to areaDetector components, such as
ADsupport, “NDPlugin*, simDetector, and netCDF,
as well as dxp support.
Here are the lines I found:

#iocxxxWin32_DBD += ADSupport.dbd NDFileNetCDF.dbd
#xxx_LIBS_WIN32 += ADBase NDPlugin netCDF
#iocxxxCygwin_DBD += ADSupport.dbd NDFileNetCDF.dbd
#xxx_LIBS_cygwin32 += ADBase NDPlugin netCDF
#iocxxxCygwin_DBD += ADSupport.dbd NDFileNetCDF.dbd
#xxx_LIBS_cygwin32 += ADBase NDPlugin netCDF
#iocxxxLinux_DBD += ADSupport.dbd NDFileNetCDF.dbd
#xxx_LIBS_Linux += ADBase NDPlugin netCDF

#iocxxxCygwin_DBD += simDetectorSupport.dbd commonDriverSupport.dbd
#xxx_LIBS_cygwin32 += simDetector
#iocxxxLinux_DBD += simDetectorSupport.dbd commonDriverSupport.dbd
#xxx_LIBS_Linux += simDetector

#xxx_Common_LIBS += ip

Install necessary EPICS Extensions

synApps 5.6 requires the msi EPICS extension.
First, setup the extensions subdirectory

	1
2
3

	 cd ~/Apps/epics
 wget http://www.aps.anl.gov/epics/download/extensions/extensionsTop_20120904.tar.gz
 tar xzf extensionsTop_20120904.tar.gz

Now, download msi, unpack, build, and install it:

	1
2
3
4
5

	 wget http://www.aps.anl.gov/epics/download/extensions/msi1-5.tar.gz
 cd extensions/src
 tar xzf ../../msi1-5.tar.gz
 cd msi1-5
 make

Make these additional declarations in your environment
(~/.bash_aliases):

	1
2
3
4
5
6
7
8
9

	export EPICS_EXT=${EPICS_ROOT}/extensions
export EPICS_EXT_BIN=${EPICS_EXT}/bin/${EPICS_HOST_ARCH}
export EPICS_EXT_LIB=${EPICS_EXT}/lib/${EPICS_HOST_ARCH}
if ["" = "${LD_LIBRARY_PATH}"]; then
 export LD_LIBRARY_PATH=${EPICS_EXT_LIB}
else
 export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${EPICS_BASE_LIB}
fi
export PATH=${PATH}:${EPICS_EXT_BIN}

Install other support

The EPICS sequencer needs the re2c package (http://re2c.org/).
This is available through the standard package installation repositories:

	1

	sudo apt-get install re2c

Building

Now, build the components of synApps selected in the Makefile:

	1
2
3

	cd ~/Apps/epics/synApps_5_6/support
make release
make rebuild

The make rebuild step took about 70 minutes.

PyEpics

It is possible to run the PyEpics support from Matt Newville
(http://cars.uchicago.edu/software/python/pyepics3/)
on the Raspberry Pi!

Preparing Python

To simplify installation, we’ll use easy_install (from setuptools).

Note

The additions to the Python installation will be done as root.
Here’s how to become root on the default wheezy-raspbian distribution.

sudo su

First, install the setuptools package from the wheezy repository.
(Also, as long as we’re here, the ipython shell is very helpful.)
Let’s load them both:

sudo apt-get install python-setuptools ipython

Next, we want to know which version of Python will be run:

which python
/usr/bin/python
ls -lAFg /usr/bin/python
lrwxrwxrwx 1 root 9 Jun 5 2012 /usr/bin/python -> python2.7*

Python 2.7 will be run.

Install PyEpics

With the setuptools installed, it becomes simple to install PyEpics (still as root):

easy_install -U PyEpics

The installation will complain about missing EPICS support libraries (libca and libCom).
Now, we can address that (still as root):

cd /usr/local/lib/python2.7/dist-packages/pyepics-3.2.1-py2.7.egg
cp /home/pi/Apps/epics/base-3.14.12.3/lib/linux-arm/libca.so.3.14 ./
cp /home/pi/Apps/epics/base-3.14.12.3/lib/linux-arm/libCom.so.3.14 ./
ln -s libca.so.3.14 libca.so
ln -s libCom.so.3.14 libCom.so

Now, exit from root back to the pi account session:

exit

Testing PyEpics

First, you might be eager to see that PyEpics will load.
Save this code in the file verify.py (in whatever folder
you wish, we’ll use /home/pi):

	1
2
3
4
5
6

	#!/usr/bin/env python

import epics

print epics.__version__
print epics.__file__

Also, remember to make the file executable:

chmod +x verify.py

Now, run this and hope for the best:

./verify.py
3.2.1
/usr/local/lib/python2.7/dist-packages/epics/__init__.pyc

This shows that PyEpics was installed but it does not test that EPICS is working.

Testing PyEpics with an IOC

Note

We’ll need to use several tools at the same time.
It is easiest to create several terminal windows.

To test that EPICS communications are working, we need to do some preparations.

softIoc

The simplest way to do this is to use the softIoc support from EPICS base
with a simple EPICS database. Save this into a file called simple.db:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	record(bo, "rpi:trigger")
{
 field(DESC, "trigger PV")
 field(ZNAM, "off")
 field(ONAM, "on")
}
record(stringout, "rpi:message")
{
 field(DESC, "message on the RPi")
 field(VAL, "RPi default message")
}

Note

The file simple.db defines two EPICS records: rpi:trigger and rpi:message.
The first record can take the value of 0 or 1, which also have the
string values of “off” and “on”, respectively. The second record
is a string.

Now, run the EPICS soft IOC support with this database:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	pi@raspberrypi:~$ softIoc -d simple.db
Starting iocInit
##
EPICS R3.14.12.3 $Date: Mon 2012-12-17 14:11:47 -0600$
EPICS Base built Jan 19 2013
##
iocRun: All initialization complete
epics> dbl
rpi:trigger
rpi:message
epics>

camonitor

In a separate terminal window, watch the soft IOC for any changes
to EPICS PVs we created above:

pi@raspberrypi:~$ camonitor rpi:trigger rpi:trigger.DESC rpi:message rpi:message.DESC
rpi:trigger <undefined> off UDF INVALID
rpi:trigger.DESC <undefined> trigger PV UDF INVALID
rpi:message <undefined> RPi default message UDF INVALID
rpi:message.DESC <undefined> message on the RPi UDF INVALID

Python code

Now, let’s communicate with the PVs of the softIoc.
Put this code in file test.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	#!/usr/bin/env python

import epics

print epics.caget('rpi:trigger.DESC')
print epics.caget('rpi:trigger')
print epics.caget('rpi:message.DESC')
print epics.caget('rpi:message')

epics.caput('rpi:message', 'setting trigger')
epics.caput('rpi:trigger', 1)
print epics.caget('rpi:trigger.DESC')
print epics.caget('rpi:trigger')
print epics.caget('rpi:message.DESC')
print epics.caget('rpi:message')

epics.caput('rpi:message', 'clearing trigger')
epics.caput('rpi:trigger', 0)
print epics.caget('rpi:trigger.DESC')
print epics.caget('rpi:trigger')
print epics.caget('rpi:message.DESC')
print epics.caget('rpi:message')

Make the file executable and then run it:

pi@raspberrypi:~$ chmod +x test.py
pi@raspberrypi:~$./test.py
trigger PV
0
message on the RPi
RPi default message
trigger PV
1
message on the RPi
setting trigger
trigger PV
0
message on the RPi
clearing trigger
pi@raspberrypi:~$

Note that new messages have also printed on the terminal running camonitor:

rpi:message 2013-01-21 08:20:28.658746 setting trigger
rpi:trigger 2013-01-21 08:20:28.664845 on
rpi:message 2013-01-21 08:20:28.697210 clearing trigger
rpi:trigger 2013-01-21 08:20:28.702967 off

Files

These files, described above, are available for direct download:

	file
	description

	verify.py
	test that PyEpics is installed

	simple.db
	simple EPICS database to test PyEpics communications with EPICS

	test.py
	Python code to test PyEpics communications with EPICS

Delimiters: Parentheses, Braces, and Back-Quotes

In the code examples above, a combination of parentheses,
braces, and back-quotes (a.k.a. accent grave or backtick) are used.

In the /bin/bash shell, braces, { and }, are used to
delimit the scope of symbol names during shell expansion.
In the code examples above, the delimiters are probably unnecessary.
Using these delimiters is a cautious practice to adopt. Parentheses
are not recognized in this context:

~$ echo $EPICS_ROOT
/usr/local/epics
~$ echo ${EPICS_ROOT}
/usr/local/epics
~$ echo $(EPICS_ROOT)
EPICS_ROOT: command not found

However, in the various files and commands that configure and
command the EPICS components, parentheses, (and), are
the required delimiters. See these examples from above:

#AREA_DETECTOR=$(SUPPORT)/areaDetector-1-8beta1
#IP=$(SUPPORT)/ip-2-13

Sometimes, in a shell script, it is necessary to assign a variable
with the value obtained from a command line tool. One common way to
do that, shared by bash and some other shells such as tcsh,
is to enclose the command line tool with the ` back-quote character.
See this example:

~$ echo $SHELL
/bin/bash
~$ echo `/usr/local/epics/base-3.14.12.3/startup/EpicsHostArch`
linux-x86_64

An alternative way to do this assignment in bash was pointed out,
to use shell expansion with parentheses as the delimiters,
such as:

~$ echo $(/usr/local/epics/base-3.14.12.3/startup/EpicsHostArch)
linux-x86_64

Index

 nav.xhtml

 Table of Contents

 		Installing EPICS on the Raspberry Pi

_static/down-pressed.png

_static/minus.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/up.png

_static/file.png

_static/comment-bright.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

